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The decay of a turbulent swirl in a pipe 

By FRANK KREITH AND 0. K. SONJU 
University of Colorado, Boulder, Colorado 

(Received 16 April 1964 and in revised form 22 January 1965) 

This paper presents a linearized theory for the average decay of a tape-induced 
fully developed turbulent swirl in flow through a pipe. In  the Reynolds number 
range between lo4 and lo5 the theoretical analysis was found to be in good agree- 
ment with experimental data obtained with water in a 1 in. pipe, provided the 
eddy diffusivity was chosen appropriately. 

It was observed that a turbulent swirl decays to about 10-20 yo of its initial 
intensity in a distance of about 50pipe diameters, the decay being more rapid 
at smaller than at larger Reynolds numbers. The theoretical swirl velocity dis- 
tribution agreed qualitatively with experimental measurements at distances 
less than 20diameters downstream from the outlet of the swirl inducer, but 
deviated from the experimental results further downstream. 

1. Introduction 
Problems related to the dynamics of turbulent vortical flow systems have 

recently received considerable attention. Reynolds (1961 a, b) ,  Deissler & 
Perlmutter (1960), and Sibulkin (1962)t have treated a variety of vortical flow 
problems in order to explain and analyse the phenomena taking place in a vortex 
tube. Kerrebrock & Meghreblian (1961), Keyes (1960) and Ragsdale (1961) 
have studied other types of vortex flows in an effort to develop a method suitable 
for the containment of gases in a fission rocket. Kreith & Margolis (1959), 
Smithberg & Landis (1964), and Gambill, Bundy & Wansbrough (1961) studied 
forced turbulent swirl flows in tubes with tape inserts with a view towards im- 
proving heat exchanger performance. This paper presents the results of an 
experimental and analytical study of the decay of an incompressible, tape- 
induced turbulent swirl in a tube. The results of this study may have applications 
in technical devices such as a heat exchanger or a nuclear rocket, but no attempt 
will be made here to relate this work to any particular device. 

2. The governing equations 
Prom the continuity and Navier-Stokes equations in the co-ordinates and 

notation indicated in figure 1, on taking mean values with respect to time and 
requiring the mean motion to be steady, incompressible, and axisymmetric 
(Hinze 1959), the following system of equations are obtained: 

-+--- aU 1 a(rV)  
ax r iir - 0, 

t This reference contains a complete summary of the work prior to 1960. 
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(2) 

(3) - aw aw vw 
ax ar r 

u-"i. Vp+- = v 

These equations are non-linear , there are more dependent variables than govern- 
ing equations, and no general method of solution exists. In  the absence of general 
principles on which further mathematical relationships might be based, we are 
forced to seek an approximate solution by simplifying the equations with the 
aid of an order of magnitude analysis. 

w=O at the end of 
v 

the swirl inducet 

FIGURE 1. Co-ordinate system and velocity notation. 

3. Solution of the swirl equation 
Experiments in turbulent as well as laminar flow (Smithberg & Landis 

1964; Talbot 1954) have shown that as a result of the swirl the axial velocity 
decreases near the centre of the pipe and increases near the wall. This is illustrated 
by the data of Smithberg & Landis shown in figure 2 in dimensionless form. Since 
these data were obtained with twisted metal tapes, identical to those used in the 
experimental phase of this study, they can be used directly to establish an average 
initial velocity profile. 

Substituting U, + u' for U in (a), which will be called the swirl equation, yields 

terms of the form U, a and u'--, where U, is the mean axial velocity profile 

in fully-developed axial pipe flow. An order of magnitude analysis shows that the 
latter terms are negligible compared to the former. 

aw aw 
X ax 
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FIGURE 2. Mean axial velocity distribution according to Laufer (1954) (-, 
U ,  = U(r ,  a)) and Smithberg & Landis (1964), H = 20 (- - , U(r, 0) ) .  
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The boundary conditions which must be satisfied are 

au V = W = O ,  - = 0  at r = O ,  
ar 

U =  V =  W = O  a t  r = a ,  

where a is the tube radius. Using the boundary condition for V and noting that 
aU/ax is very small, (1) shows that V is also small so that the term 

V(aV/ar + W/r) 
can be neglected in (4a). An analysis of the results obtained in a decaying laminar 
swirl (Talbot 1954) suggests that in turbulent flow the term v(82W/&z) will be 
negligible compared to U(a W/ax). Using data for fully-developed turbulent 
flow in a pipe (Laufer 1954) as a guide for the phenomena occurring in the 
present problem, it seems reasonable to expect that on the average also the term 
a E / a x  is an order of magnitude smaller than the term U (awlax). 

I n  a number of vortex flow systems it has been shown (Gambill et al. 1961; 
Keyes, 1960; Ragsdale 1961; Reynolds 1961a) that the Reynolds stress p% 
can beapproximated by - s(a  W/ar - W / r )  where E is the so-called eddy diffusivity. 
In  general e is a variable in a flow system, but experiments have shown (Deissler 
& Perlmutter 1960; Keyes 1960; Einstein & Li 1951) that it  does not vary appre- 
ciably with r in a vortex. Although this experimental evidence was gathered in 
systems having geometrical configurations different from the one treated here, 
if one assumes that the basic structure of the p= term does not change from one 
vortex system to another, the available data can be applied to the problem at 

17-2 
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hand. Moreover, because of the predominance of the axial velocity in the case 
treated here (Musolf 1963), the value of e will also be assumed independent of x. 

With the simplifications outlined above, the swirl equation reduces to the form 

This equation is linear and a solution by the method of separation of variables is 
feasible. However, before carrying out the detailed steps of this solution, it will 
be convenient to non-dimensionalize the equation by expressing the velocities, 
the distances and the eddy diffusivity as fractions of U,, a and v respectively. 
U, is the maximum value of U,. 

Equation (46) then takes the form 

where NR is the axial flow Reynolds number U,a/v. 
Assuming a solution of the form 

W(r, x )  = R(r) X ( x )  

and substituting this expression into (4c), one obtains after rearranging 

( 5 )  
d2R,(r)/dr2 + r-l dR,(r)/dr - r2 R,(r) NR dX,(x)/dx =-  = --hi,  

UlRn(r) I + €  X,(X) 

where A: are the eigenvalues and R,(r) are the eigenfunctions. The eigenvalues 
are taken as positive and the minus sign must therefore be used in order to 
satisfy the physical problem. 

The right-hand side of (5) implies that 

with solution 

x, = 0, 
ax, h2,(l+€) 

ax NR 

X,(x) = A,exp 

-+- 

where A ,  is an arbitrary constant. 
The r-dependent part of ( 5 )  is 

and the transformed boundary conditions are R,(O) = B,(1) = 0. 
If U, is taken as a constant in (7a),  the solution can be expressed in terms of 

first-order Bessel functions. A better approximation can be obtained by using 
Laufer's data for flow in a pipe (1954), which indicate that U, = (1 - r)a with good 
accuracy in the Reynolds number range from lo4 to lo6 .  Using this variation 
in U, as a perturbation term, (7) can be solved, as shown by Courant & Hilbert 
(1953), by a method of approximations. 

The perturbed differential equation can be written in the form 

LR, -.A;( 1 - U,) R,+A:R, = 0, ( 7 b )  
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where the operator L = d2/dr2 + r--1 d/dr - r--2 

and a is a perturbation parameter in terms of which the solution will be ex- 
panded. In  the present case a will be set equal to 1.0 in order to satisfy (70). 

Neglecting first the perturbed term in (7b) ,  the solution is Rn = BnJl(Xnr), 
where zn and Xt denote the appropriate eigenfunctions and eigenvalues, 
Jl(X,r) is the Bessel function of the first kind of order one, and B, is an arbi- 
trary constant. Since the perturbation theory assumes the boundary conditions 
on the perturbed and unperturbed eigenfunctions to be identical, one has 

&(O) = 0 and &(I) = 0. 

The first boundary condition Rn(0) = 0 is satisfied since Jl(XnO) = 0. The 
second boundary condition, Zn(l) = 0, requires that Jl(Xnl) = 0. The zeros of 
J,(x,) are well known, and for p = 1 Jahnke Q Emde (1945) list them as 
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Xf = 14.684, Xg = 49.224, X: = 103.490, X: = 177.529 .... (8) 

The next assumption made in the perturbation theory is that the eigen- 
functions, as well as the eigenvalues, may be expanded in powers of a, or 

R,(r) = Rn + apn + a2qn + . . . , (9) 

A: = Xi+apn+a2yn+ ..., (10) 

where the eigenfunctions R,(r) and Rn(r) are normalized. 

mations yields 
Substituting these expressions into (7 b)  and evaluating the two first approxi- 

R,(r) M (2/Ji(Xl))*Jl(Xlr) = 361J1(X1r), 

R2(r) M (Z/J~(X2))+Jl(X2r) = 4.72J1(X2r), 

R3(r) M (2/Ji(X3))*J1(X3r) = 5-66J1(X3r), 

R4(r) M (Z/J$(X4))*J1(x4r) = 6-47J1(X4r), ... 

(11)  

and h: M 16-68, M 55.71, A: M 117.86, A: M 203.73, .... (12) 

The details of this solution are shown in the Appendix. 

dition a series solution of the form 
The initial condition on W(r,  x) is W(r, 0) = f (r) .  To satisfy this initial con- 

m 

n= 1 
W(r,x)  = I: CnJl(X,r) exp (13) 

is assumed, and one has 
W 

W(r,  0) = f ( r )  = 2 CnJl(Xnr). 
n=l 

Since the fmt-order Bessel functions are orthogonal with respect to the weight 
function r,  C, can be expressed as 

1; r f i y )  Jl(Xnr) dr 
cn= ~ (14) s,’ rJ;(X,r) dr 
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The theoretical determination of W(r,  z) is now complete, and may be used to 
check the experimental data as soon as the initial condition and the eddy dif- 
fusivity of the flow in the system are known. 

4. The initial condition 
In  order to derive a theory for the flow and heat transfer in tubes with swirling 

flow, Smithberg & Landis (1964) made velocity measurements at the outlet 
section of a 1-328 in. diameter tube with twisted tape inserts having pitches from 
3.6 to 22.0 pipe diameters. The pitch is defined as the axial distance for a 360- 
degree twist of the tape. They obtained velocity profiles in the Reynolds number 
range of interest here and these measurements were used to establish the initial 
condition for the problem at hand because the experimental velocity profiles 
obtained in the present work were only of a qualitative nature. The initial swirl 
velocity profile is shown in figure 3 in dimensionless form. The measurements of 
Smithberg & Landis indicate that the swirl velocity and the axial velocity profiles 
are not completely axisymmetric because of secondary flows created in the swirl 
inducer section. Since the theory assumes axisymmetric flow, an average profile 
was usedas shown in figure 3, where also the magnitude of the deviations from this 
average profile due to secondary flows are indicated. 

0.4 - 

0.3 - 
W 

- 

0 0.1 0.2 0.3 0.4 0-5 0.6 0.7 0.8 0-9 1.0 
r 

FIGURE 3. Initial swirl velocity distribution for H = 10 according to 
Smithberg & Landi~ (1964). 

The initial condition shown in figure 3 can be approximated by the expression 

W(r,O) =f(r) = H-1[6.3r-0.013(1.1 -r)-2.6s], 

which has a maximum of 0.48 at r N 0.85 when H, the non-dimensional pitch 
of the inducer tape, has a value of 10. 

The coefficients C,, found by numerical integration of (la), are 

C, = 7*78/H, C, = - 5.26/H, 6'3 = 3*93/H, C, = - 3.16/H. (15) 
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From (13) the swirl velocity distribution can then be written as 

7-78 [ 16-7gR+e)z] -___ 5-26 
H 

W ( r , x ) =  __ Jl(3-832r)exp - 
H 

3.93 
H 

[ 1 17-9(lR+ e )  x] + - J1( 10.174r) exp - 

-- 3.16 J1( 13.324r) exp [ - 203.7;~+4~1+ .... (16) 
H 

5. The eddy diffusivity for the Reynolds stress term p G  
The swirl velocity W(r,  x) for the tape-induced swirl can be determined from 

(16) provided e, the dimensionless value of the eddy diffusivity, can be ascer- 
tained in some way. Fortunately, the eddy diffusivity in a vortex flow has been 
measured independently by Ragsdale (1961) as well as by Keyes (1960) and their 
results can be modified to satisfy the problem at hand as shown below. In  these 
investigations, the swirl was induced by tangential jets along the periphery 
of the tube and the axial flow was very small compared to the swirl. The experi- 
mental set-ups differed principally in the aspect ratio of the test section, which 
was 6 in Keyes's work, but less than one in Ragsdale's. The data of these two 
studies are plotted in figure 4 of Ragsdale (1961). 

Keyes correlated his data, which extended over a range of tangential Reynolds 
numbers from 4 x lo4 to 1 x 106, by the method of least squares and proposed the 
equation e = 2.03 x 10-3(NR,t)O'86. The Reynolds number exponent in this 
correlation is in close agreement with results of the Martinelli (1947) analogy 
for turbulent flow in a pipe which predicts an exponent of 0.90 for the variation 
of E with axial-flow Reynolds number. Ragsdale obtained data only over a very 
small range of Reynolds numbers (5 x lo5 to 1 x 106); by means of a heuristic 
similarity argument he suggested that e should be directly proportional to the 
Reynolds number and his correlation line fits the equation e = 1.4 x 10-3NR,,. 
In  the Reynolds number range for which both Keyes and Ragsdale obtained data, 
the values of eddy diffusivity measured by the latter are considerably larger. 

In  view of the fact that in the present study the axial flow was substantial, 
it  seemed more appropriate to use the exponent of 0.86, which is in substantial 
agreement with pure axial flow results of Martinelli. But in view of the dis- 
agreement in the measured magnitude of e it  was decided to perform an experi- 
ment to select a value of e which would fit the present situations at one axial 
Reynolds number and then use Keyes's functional relationship to extend the 
measured value to other conditions. 

The swirl decay was measured at an axial flow Reynolds number of 61,000 
and the value of e which correlated the decay characteristics predicted by theory 
and those which were observed experimentally was calculated and found, within 
the accuracy of the experimental data, independent of the swirl intensity, to be 
54. This value, in conjunction with the appropriate exponent, yielded the correla- 
tion equation 

where, in view of the predominance of the axial velocity component, an average 
(17) 8 = 4.15 x 10-3~p6, 
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for all pitches was used to make the swirl decay independent of the initial 
swirl intensity. 

The foregoing method of evaluating 8 is clearly empirical. However, having 
once established at one Reynolds number the appropriate scaling factor for 
Keyes’s data, the eddy diffusivity calculated by this technique combined with 
the analysis presented in the preceding section yielded good agreement between 
experimental results and theoretical predictions for average swirl decays ‘at 
other Reynolds numbers, as will be shown below. It would undoubtedly be 
more satisfactory if one could predict the eddy diffusivity from more funda- 
mental principles, but at the present state of our understanding of turbulent 
transport phenomena recourse to at least one empirical step seems to be un- 
avoidable. At the same time, however, it  is to be hoped that experience with 
successful guesses or empirical approaches, as were used in this study, will 
eventually point the way towards general and more basic principles. 

6. Experimental measurements 
In  order to verify the theoretical analysis of the swirl decay in a pipe, a series 

of experiments were performed in which the decay of a swirl induced into the flow 
through a 1 in. pipe by means of twisted tape swirl inducers was measured over a 
range of axial Reynolds numbers from 1 0 4  to about 105. The general arrange- 
ment of the equipment is shown schematically in figure 4 and a photograph of rl +Vmt , pPreswregauge 

Constant head .tank 

FIGURE 4. Schematic sketch of experimental equipment. 

the test set-up is presented in figure 5 (plate 1). Water from a constant head tank 
entered the test section, which consisted of a 1 in. I.D. plastic tube, about 100 in. 
long. A swirl was introduced into the flow by means of a twisted tape inducer 
inserted in the inlet section as shown in figure 6 (plate 2). The twisted tape in- 
ducers used in the experiments consisted of 0.0336 in. thick galvanized steel 
strips and were similar in construction to those used previously by Kreith & 
Margolis (1959), Gambill et al. (1961), and Smithberg & Landis (1964). 
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Two different types of swirl inducers were used in the experiments. One had a 
dimensionless pitch H of 9 which was about the tightest obtainable without 
buckling the tape. The other inducer had a pitch of 15. Both inducers were 
sufficiently long to obtain a fully-developed swirl velocity profile at the outlet 
of the inducer section. 

The average swirl in the pipe was measured at various distances downstream 
from the outlet of the inducer section by means of a swirl vortex meter shown 
in figure 6. This meter consisted of a flat blade, which was free to rotate about 
an axial shaft in the centre of the tube. The blade extended 0.437in. 
radially from the centre line of the pipe in both directions and was 0.25 in. long 
in the axial direction; its rotational speed was measured by means of a strobo- 
scope. 

The measured angular velocities of the blade are plotted as a function of 
distance from the inducer outlet in figures 7 and 8 for both inducer tapes; the 
data shown were obtained at Reynolds numbers of 61,000 and 18,OOOrespectively. 
In  both figures the data are presented in percentage of the initial swirl vs 
the dimensionless axial distance 2. The experiments indicate that the rate of 
decay depends on the axial Reynolds number: the decay rate increases as the 
Reynolds number decreases, but within the experimental accuracy the decay 
was found to be independent of H or, equivalently, of the initial swirl intensity. 

The swirl decay measurements obtained in this study do not yield velocity 
profiles since the radial velocity of the swirl meter is only representative of an 
‘average ’ angular rotation of the fluid in the pipe. The experimental measure- 
ments can, however, be compared with the theoretically predicted decay charac- 
teristics in the following manner. Neglecting the friction of the bearing in the 
swirl meter, the expected angular velocity of rotation of the meter blade 0, can 
be calculated from the moment of momentum about the axis of the swirl over 
the area of the blade, or 

where rB is the radial length of the blade. 

satisfactory accuracy with the first three terms in the series 
Combining (18) with (16) gives an expression which can be evaluated with 

for values of x more than one or two diameters downstream from the outlet of 
the inducer section, aind, from the initial velocity profile given in 5 4, one obtains 
ua/(Uo/a) = 6.O/H. 

The results of the theoretical analysis and the experiments are compared in 
figures 7 and 8. An inspection of these figures shows that the measured ‘average ’ 
swirl decay characteristics are in very good agreement with the theoretically 
predicted swirl decay. 
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FIGURE 7. Comparison of experimentally measured and theoretically predicted sw-irl 
decay at a Reynolds number of 61,000. Experimental data in l in .  pipe for various 
inducers. 0,  Pitch 15, length 30 in.; x , pitch 9, length 30 in.; 0, pitch 9, length 18 in.; 
8, pitch 15, length 18 in.; ___ , theory. 

9 

X 

FIGURE 8. Comparison of experimentally measured and theoretically predicted swirl 
decay at a Reynolds number of 18,000. Experimental data in 1in.  pipe for various 
inducers. 0,  Pitch 15, length 30 in.; x , pitch 9, length 30 in.; 0,  pitch 9, length 18 in.; 
8, pitch 15, length 18 in.; - , theory. 

The analysis predicts not only the swirl decay, but also the velocity distribution 
downstream from the inducer section. An attempt was, therefore, made to com- 
pare the theoretically predicted velocity distribution with some measurements 
made in a 2 in. I.D. tube by Musolf (1963) in a geometrically similar system with 
a directional Pitot tube. These experimental data are qualitative rather than 
quantitative because the axial and tangential velocity components were not 
measured directly, but were calculated from measurements of the local flow 
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direction and the mass rate of flow through the pipe, using an axial velocity dis- 
tribution approximated from figure 2 and the relation 

(20) 
where /3 is the angle between the axis of the pipe and the direction of the net 
velocity vector. 

Some of the results are shown in figure 9. Comparing these profiles with the 
theoretical swirl velocity distribution shows general agreement near the swirl 
inducer, i.e. within a distance less than about 20 diameters downstream from 
the outlet of the inducer section. Further downstream, where the theory pre- 
dicts profiles with a radial distribution proportional to J1(3-83r), the experimental 

W ( r ,  x) = U(r ,  5) tan,!?, 

0.5 1 

w 0.3 I 

o-2-l 0.1 '* 

0 0.2 0.4 0.6 0.8 1.0 
r 

FIGURE 9. Experimentally measured tangential velocity profiles at a Reynolds number of 
48,000. Tangential velocity: m, 2 = 6; x , z = 10; 8, z = 47; +, x = 100. Axial velocity, 
6.24 ft./sec. Reynolds number, 48,000; inducer pitch, 10. 

profiles are more triangular in shape with a maximum velocity at a radial dis- 
tance from the centre line of about 0.80 yo of the pipe radius. In  passing, it should 
be noted that the integral equation (Sonju 1962) 

was used to estimate (aW/ar),, and, although owing to a lack of more detailed 
information about the flow the term E I U t  was neglected, the estimated values 
of (a  Wjar),, agreed reasonably well with the measurements. Some refinements 
of the theory were attempted by assuming some simple relations for the eddy 
diffusivity with radial distance which would yield = 0 a t  r = 1, but these 
attempts were not successful. It appears, therefore, that additional measurements 
should be made with more refined equipment in order to determine reliably 
whether or not the analysis presented here can be used to predict velocity profiles 
in a decaying swirl as well as the average decay characteristics. 

The authors are happy to acknowledge the assistance of Mr A. 0. Musolf 
in the experimental part of this study and the financial support of the National 
Science Foundation. 
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Appendix. Perturbation solution of the swirl equation 

Frank Kreith and 0. K .  Sonju 

The r-dependent part of the swirl equation is 

This equation can be solved by a perturbation theory outlined by Courant 
I% Hilbert (1953). Taking the operator L as 

d2 I d  1 L = -+-- _ -  
d? r dr rz ’  

the unperturbed problem can be written 

with the boundary conditions Rn(0) = &(1) = 0. This equation has the solution 

where J1 is the Bessel function of the first kind of order one, and Y, is the Bessel 
function of the second kind of order one, while B, and D, are arbitrary con- 
stants. The solution to (A 1) can be found in Wylie (1960). 

LRn+X2,En = 0, (A 1)  

(A 2) Rn(r) = B, J1(X,r) + D,q(X,r),  

The boundary conditions imply D, = 0 and 
- 
h2, = 14.684, Xi = 49.224, Xg = 103.490, Xi = 177.539 .... 

The unperturbed normalized eigenfunctions are then 

where Jo is the Bessel function of the first kind of order zero. 
The perturbed differential equation can be written as 

where a is a perturbation parameter. Comparing this equation with (7a)  the 
perturbation parameter is found to be 1.0. This value of a will be used in the final 
solution. The boundary conditions are R,(O) = Rn(l) = 0. 

Assuming that the new eigenvalues as well as the new eigenfunctions may 
be expanded in powers of the perturbation parameter a, then, since the present 
problem has simple eigenvalues, the solution can be written in the form 

and 

R, = En+apn+a2qn+.. .  

h2, = x;+apn+a2y,+ ...) 
where R, and R, are normalized. 

Inserting these relationships into the differential equation (A 3) and equating 
to zero the coefficients of the various powers of a lead to the following differential 
equations for the different approximations : 

go: LR, + X2, R, = 0, 

a,: Lp, + x;pn = ( 1 - U,) Xi Rn - p ,  En, 
a‘: Lqm + x i  qn = (1  - u1) (Xpn  + pn 

(A 1)  

(A 5) 

(A 6) -pnpn - En, 
..................................................................... 

From these equations the perturbations of various orders can be calculated. 
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Multiplying (A5) by rEm, since the weight function of J1 is r,  and integrating 
from r = 0 to r = 1.0 one obtains 

The first term on the left can be transformed by partial integration and utiliza- 
tion of the relations, p,(O) = pn( 1) = 0 and LRm = -XkRm, to 

where 

and S,, = 0 for n + m and a,, = 1.0. 

By letting m = n one obtains 

and taking m $. n 
Pn = dnw 

a,, = d,,/(X: - Xk). 
The quantity a,, is found from the normalization conditions 

By expansion of the first condition one finds 

The uniqueness of this power series implies that 

IO1 2rRnpndr = r(2Enq,+p$)dr =... = 0, 1: 
and therefore a,,, = 0. 

If pn(r) can be expanded in terms of the Rj, one has 

where the sign E' denotes summation over the indicated values of j omitting the 
term for which j = n. 

Having determined the first approximation, the second approximation 
m 

qn(r) = I: bn,& 
m=l 

is found similarly by using (A B), from which it follows, as before, that 

where 
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Setting n = m one obtains the second perturbation term for the eigenvalues, 
namely 

while for n + m one finds 

To determine b,, one must again employ the normalization condition 

and set the coefficient of a2 equal to zero. It follows that 

which completely determines the second approximation. 
Further approximations may be determined successively in precisely the same 

manner, but in the present investigation only the first two approximations were 
used. 

The coefficients were evaluated numerically, and they give: 

R, = 3.511J1(X,r) +0.116J1(X,r) -0.0165J1(X3r) + ..., 
R, = -0.302Jl(Xlr)-4-72Jl(X2r)+ ..., 
R, = 0.072J1(X1r) + 5.66J1(x,r) + ..., 
R, = 6.47J.(x4r) + ..., 

and 
A! = 14.684 + 1.757 + 0.234 + . . . w 16.675, 

A; = 49.224 + 6.010 + 0.480 + . . . % 55.714, 

A: = 103.49-t 12*82+1*55+ ... w 117.86, 

A: = 177.53 + 22.50 + 2.85 + . .. w 203.73. 

The eigenfunctions can be approximated by 

R, = 3.51J1(X1r), R, = 4.72J1(X,r), 

R, = 5*66J1(x3r), 

R, = 6.47J1(X4r). 
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